Четверг, 21.11.2019, 00:51
Главная Мой профиль Регистрация Выход RSS
Вы вошли как Гость | Группа "Гости"Приветствую Вас, Гость


Меню сайта
Интересно
Интересно
интересно
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Форма входа
Книги
интересно
интересно
Поиск
Главная » Статьи » Аудио » Усилители мощности

Демпинг-фактор - мифы и реальность

Демпинг-фактор - мифы и реальность

© А.И.Шихатов 2001



    Демпинг-фактор (в отечественной литературе - коэффициент демпфирования) - характеристика усилителя, определяющая его взаимодействие с нагрузкой (акустической системой). В описании многих усилителей этот параметр приобретает почти мистический смысл. Какой же коэффициент демпфирования необходим и стоит ли гнаться за рекордными цифрами?

    Усилители мощности звуковой частоты (УМЗЧ) по отношению к нагрузке делятся на два класса - источники напряжения и источники тока. Последние находят очень ограниченное применение, а практически все серийные модели являются усилителями - источниками напряжения.
    Идеальный усилитель при любом сопротивлении нагрузки создает на выходе одинаковое напряжение. Другими словами, выходное сопротивление идеального источника напряжения равно нулю. Однако идеальных вещей в природе не существует, поэтому реальный усилитель обладает определенным внутренним сопротивлением. Это означает, что напряжение на нагрузке будет зависеть от ее сопротивления (рис.1).


рис.1.


    Однако потеря выходного напряжения - не самое главное следствие того, что усилитель обладает выходным сопротивлением. При любом перемещении звуковой катушки в зазоре магнитной системы в ней наводится электродвижущая сила (ЭДС). Эта ЭДС, замыкаясь через выходное сопротивленние усилителя, создает ток, противодействующий перемещению катушки. Величина этого тока и сила торможения обратно пропорциональны выходному сопротивлению усилителя. Это явление называется электрическим демпфированием громкоговорителя и в значительной степени определяет характер воспроизведения импульсных сигналов.

    Динамическая головка - сложная колебательная система, имеющая несколько частот резонанса (механический резонанс подвижной системы, внутренние резонансы подвеса и диффузора и т.д.). При воспроизведении импульсного сигнала возникают колебания на резонансных частотах системы. Неприятность заключается в том, что при слабом демпфировании эти затухающие колебания могут продолжаться и после того, как закончился вызвавший их импульс (рис.2). В результате воспроизведение будет сопровождаться призвуками, окрашивающими звучание.

рис.2.


    Задача конструктора аудиосистемы - задемпфировать громкоговоритель так, чтобы собственные колебания затухали как можно быстрее. Однако средств для этого не так уж много. Возможны три способа демпфирования головки:
  • механическое демпфирование, определяемое потерями на внутреннее трение в подвесе
  • акустическое демпфирование, определяемое особенностями акустического оформления
  • электрическое демпфирование, определяемое выходным сопротивлением усилителя

    Механическое демпфирование определяется конструктивными особенностями динамической головки и закладывается на этапе ее проектирования. Изменить его величину в готовом динамике редко представляется возможным. Как самостоятельное решение акустическое демпфирование применяется в виде заполнения корпуса акустической системы звукопоглощающим материалом. Кроме того, акустическое демпфирование входит в конструктивное оформление закрытых СЧ и ВЧ головок. Некоторое влияние на акустическое демпфирование оказывает и сопротивление излучения динамической головки. Однако, вклад всех этих составляющих в общую степень демпфирования головки невелик. Таким образом, электрическое демпфирование становится основным инструментом воздействия на переходные характеристики системы "усилитель-динамическая головка".

    Взаимосвязь характера звучания с выходным сопротивлением усилителя заметили еще в пору ламповых усилителей, в 50-е годы. Особенно заметна была разница в звучании усилителей с выходным каскадом на триодах и пентодах. Пентодные усилители обладали значительным выходным сопротивлением, вследствие чего динамические головки были недодемпфированы и звучание приобретало гулкий призвук. Введение отрицательной обратной связи позволило снизить выходное сопротивление усилителя, но полностью проблему не решало. Удивительно, что спор о том - какой усилитель лучше, продолжаются и полвека спустя. А ведь дело не только в усилителе, но и в акустической системе.
    Для оценки демпфирующих свойств усилителя был предложен новый параметр - коэффициент демпфирования (damping factor), представляющий собой отношение сопротивления нагрузки к выходному сопротивлению усилителя.

    Проведенные тогда же эксперименты позволили установить минимальную величину этого параметра - 5...8. Дальнейшее снижение выходного сопротивления усилителя практически не влияло на импульсные характеристики системы. Кстати, идеология Hi-Fi (сокращение от High Fidelity - высокая верность) и сам термин оформились к концу 50-х годов. К этому моменту были определены минимальные требования к аудиосистеме - полоса воспроизводимых частот, коэффициент гармоник (тогда его называли clear factor - "степень чистоты") и выходная мощность. Впоследствии, после появления транзисторных усилителей и специализированных низкочастотных динамических головок с "легким" подвесом, нижний предел демпинг-фактора был повышен. Это позволило однозначно определить степень демпфирования головки параметрами усилителя вне зависимости от особенностей акустического оформления. При этом в некоторых пределах обеспечивалась "одинаковость" звучания конкретной АС с различными усилитлеями.

    Знаменитый стандарт DIN45500 определял коэффициент демпфирования для Hi-Fi усилителей однозначно - не менее 20. Это означает, что выходное сопротивление усилителя при работе на нагрузку 4 Ом должно быть не более 0,2 Ом. Однако выходное сопротивление современных усилителей намного меньше - сотые и тысячные доли ома, а демпинг-фактор, соответственно, - сотни и тысячи.

    Каков смысл столь значительного улучшения этого показателя? Коэффициент демпфирования в данном случае, как ни странно, ни при чем. Важна только одна его составляющая - выходное сопротивление усилителя. В данном случае имеет место "магия цифр", поскольку к сотням ватт выходной мощности современных усилителей все привыкли и нужно привлечь покупателя чем-то новым. Согласитесь, что "демпинг-фактор 4000" выглядит намного симпатичнее, чем "выходное сопротивление 0,001 Ом". А означает это в любом варианте только одно - усилитель имеет очень низкое выходное сопротивление и способен отдавать в нагрузку значительный ток (пусть даже и кратковременно). А связь между выходной мощностью и демпинг-фактором хоть и прямая, но не однозначная. Так что термину, интересовавшему раньше только специалистов, нашлось новое применение.

    Однако в повести о демпинг-факторе есть еще одно действующее лицо - акустический кабель. А он в состоянии сильно испортить не только цифры, но и качество звучания. Ведь сопротивление кабеля суммируется с выходным сопротивлением усилителя и становится составляющей демпинг-фактора.
    Для кабеля длиной 2 м сопротивление 0,05 Ом - вполне пристойный показатель. Но для усилителя с выходным сопротивлением 0,01 Ом демпинг-фактор на нагрузке 4 Ом с таким кабелем снизится с 400 до 66. Поводов для беспокойства пока нет. Но если использовать тоненький "шнурок" из комплекта динамиков и сомнительные скрутки общим сопротивлением 0,3...0,4 Ом (ситуация, к сожалению, еще нередкая), то демпинг-фактор упадет до 10, независимо от показателей усилителя. Поэтому на проводах экономить не стоит.

    Пассивный кроссовер создает аналогичные проблемы. Поэтому катушки с ферромагнитным сердечником в кроссоверах применяются чаще, чем "воздушные" - это позволяет не только сэкономить дорогой ("у них") медный провод, но и значительно снизить сопротивление катушки. Конечно, при перемагничивании сердечника возникают дополнительные нелинейные искажения сигнала, но в большинстве случаев это меньшее зло, чем недодемпфированные динамики. Кстати, разница в звучании систем с кроссоверами разной конструкции зачастую определяется не столько характером вносимых искажений, сколько различным демпфированием динамика. В тех случаях, когда "совесть не позволяет" ставить катушки с сердечником, недостаток демпфирования можно восполнить акустическими методами. Но акустическое демпфирование не обладает всеми возможностями электрического и может в конечном счете обойтись дороже.

    Вычислить выходное сопротивление усилителя в любительских условиях можно, если при одинаковом входном сигнале измерить его выходное напряжение на холостом ходу (Eo) и на нагрузке (U) определенного сопротивления (R). Однако точность этого простого метода снижается при выходном сопротивлении усилителя меньше 0,05 Ом.
    Выводы:
  • высокий демпинг-фактор (более 50) требуется для динамических головок с легким подвесом и большой массой подвижной системы, работающих с заходом в область основного механического резонанса (сабвуфер или мидбас с активным кроссовером, широкополосные головки без кроссовера);
  • для динамических головок, резонансная частота которых находится за пределами рабочей полосы частот (СЧ, ВЧ) демпинг-фактор при многополосном усилении значения не имеет, поскольку электрическое демпфирование наиболее эффективно для подавления основного механического резонанса подвижной системы;
  • при работе с пассивным кроссовером демпинг-фактор системы определяется главным образом выходным сопротивлением кроссовера в полосе его пропускания, поэтому требования к демпинг-фактору усилителя можно снизить (20...30). Дальнейшее увеличение выходного сопротивления усилителя может вызвать изменение частот среза кроссовера;
  • демпфирование структурных резонансов в материале диффузора и подвеса не входит в функцию усилителя и может осуществляться только механически. Это проблема динамической головки;
  • для усилителей с высоким выходным сопротивлением (источников тока) понятие демпинг-фактора лишено смысла. В этом случае для подавления основного механического резонанса подвижной системы можно использовать только акустическое демпфирование.
Категория: Усилители мощности | Добавил: Richard0066 (01.04.2011)
Просмотров: 704
Всего комментариев: 0
Имя *:
Email *:
Код *:

Изучаем PerlРадиосхема №6 (2009)Лучшие конструкции "Радиолюбителя". Выпуск 1Язык программирования С# 2008 и платформа .NET 3.5Django. Разработка веб-приложений на PythonНестандартные приемы програмирования на DELPHIРадиосхема №2 (2010)К142ЕН1, КР142ЕН1, К142ЕН2, КР142ЕН2Радио №8 (2008)Культин Н.Б. Turbo Pascal в задачах и примерахАльманах программиста. Том 1. Microsoft ADO.NET, Microsoft SQL Server. Доступ к данным из приложенийПрограмирование на C++ в LinuxПрограммирование для UNIX. Наиболее полное руководствоРадиоконструктор №5 (2008)C++ Builder. Книга рецептовОбъектно-ориентированное моделирование на C++Программирование в Delphi 7 (Архангельский)Диоды - Параметры светодиодовРемонт и Сервис архив (2006)Радио №2 (2011)Основы программирования в LinuxРадиоконструктор (2001)Путь Rails. Подробное руководство по созданию приложений в среде Ruby on RailsРадиоаматор №6 (2008)Java в примерахНаиболее эффективное использование C++Резисторы - Кодовая маркировка SMD резисторов фирмы BOURNSРадиоконструктор №7 (2008)Схемотехника архив (2002)Java 2. Том 2. Тонкости программированияРадиоконструктор №3 (2009)Азбука хакера 2. Языки программирования для хакеровОсновы программирования на Visual Basic и VBA в Excel 2007C#. Программирование на языке высокого уровняLinux: программирование в примерахРадиоконструктор (2003)Системы цифровой радиосвязи: базовые методы и характеристикиОсновы разработки приложений на платформе Microsoft .NET FrameworkТиповые и иные схемы включения микросхем серии ИС LM117 / LM217 / LM317VBA и программирование в MS Office для пользователейПриемы программирования в Delphi на основе VCL10 практических устройств на AVR-микроконтроллерахПолный справочник по C++C# для профессионалов. Том 11С:Предприятие. Эффективное программированиеДиоды, стабилитроны, тиристоры - Цветовая маркировка стабилитронов и стабисторовМаркировка электронных компонентов для поверхностного монтажа (SMD)Delphi 2005. Секреты программированияРадио №2 (2008)Радиоконструктор (1999)